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1. Introduction 

Noll, Coleman, Truesdell, and their followers developed a general nonlinear theory they 
called the rational mechanics (e.g. see Truesdell and Noll, 1992). which searched for the 
most general forms of constitutive equations (CE’s). The basic set involving constitutive 
and thermodynamic equations was constructed there with a mathematical rigorosity; the 
constitutive equations satisfy: the general principles of causality, material objectivity and 
locality. Using this approach, they attempted to generally describe the properties of 
viscoelastic liquids by a set of hereditary functionals with fading memory, whose 
invariance properties and thermodynamic consistency were perfectly revealed. This 
approach could also be easily extended for viscoelastic solids. Unfortunately, the memory 
functionals in the rational mechanics have never been specified, and more importantly, it 
is unknown (if possible) how to do that. Therefore in spite of many achievements, the 
general rational mechanics and thermodynamics theories seem to be useless for 
predicting behavior of real materials. 

Two less general continuum approaches to nonlinear viscoelastic CE’s have been 
suggested for applications. One is the K-BKZ single-integral approach, independently 
developed by Kaye (1962) and Berstain, Kersley, Zapas (1963)’ which is applicable for 
both viscoelastic liquids and solids (see also, Larson, 1988). Another approach is of 
differential type (Leonov, 1976, 1987, 1999) developed for viscoelastic liquids using 
non-equilibrium thermodynamics (see also Sidoroff, 1974, and historical remarks in 
Leonov, 1976,1987). Both of these approaches are considered below and are considered 
as complementary in applications to viscoelastic solids, mostly for solid polymers, or 
being more precisely, for the thermo-mechanical properties of cross-linked rubbers. 

The relaxation phenomena, which are not taken into account in theories of pure 
elastic solids, enhance the complexity of problems for polymers. Hence, polymer solids 
demonstrate many nonlinear viscoelastic effects, such as nonlinear creep and relaxation, 
hysteresis etc., which are not seen in the other solids. Because of these complications, 
even geometrically simple problems that are solvable analytically for elastic solids have 
to be treated numerically in the viscoelastic case. 

There are practical needs for developing a thermodynamically based theoretical 
approach to solid nonlinear viscoelasticity, which might be valid for a wide range of 
strains, strain rates (frequencies) and temperatures. It seems that this approach should 
combine (i) a nonlinear multi-mode CE of differential type generated by that part of a 
relaxation spectrum with high relaxation times, and (ii) a nonlinear single-integral CE 
generated by that part of a relaxatiori spectrum -with low relaxation times. We assume that 
both parts of the combined CE are almost independent, with part (i) working for 
relatively slow motions of continuum unddergoing very large strains and having WLF 
time-temperature superposition principle appropriate for relatively high temperatures at 
the rubbery states, and with part (ii) working for fast (and very fast) motions of the 
continuum undegoing relatively small (and very small) strains and another time- 
temperature scaling valid for glassy state. Thus this approach will take into account 
thermo-rheological complexity along with high non-linearities of elastic and viscoelastic 
deformations, including compressibility effects. In this paper, only the first part o i  the 
above proposal, the part (i) of the CE’s, is demonstrated. 
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In models of the differential type designed for description of viscoelastic solids 
like cross-linked rubbers, the typical nonlinear pure elastic term should be included along 
with differential modes, originated from linear (Prony) viscoelastic modes with different 
and usually well-separated relaxation times. The simple assumption is that this term is 
additive to the viscoelastic ones. This assumption has been used by Reese and Govindjee 
(1997) a d  Bergstrom a d  Boyce (1998), for exmgle, xheie the only nonlinear 
extension of the “standard” (three-parametric) linear viscoelastic solid model has been 
employed. The treatment of the dissipative term in the evolution equation used by Reese 
and Govindjee (1997) for a nonlinear Maxwell element is not convincing, and the whole 
approach to the evolution equation for this element developed by Bergstrom and Boyce 
(1 998) is questionable. An additional important question to ask of the paper by Bergstrom 
and Boyce (1998), where both the pure gum elastomers and carbon black filled 
compounds were studied, relates to their treatment of Mullins hysteresis for carbon black 
filled rubbers as a pure relaxation effect. It is, however, known (see Joshi and Leonov, 
2001) that this effect, being structurally reversible (i.e. thixotropic), is not of a type that 
originates from relaxations of an elastomer matrix. It usually takes several months at 
room temperature for the complete recovery of a filled elastomer under unloading. 

The differential type of modeling has another importance: one can establish the 
transformation in behavior from liquid to solid-like via vulcanization using 
chemorheological modeling (Mitra, 2000) with this type of CE. Surprisingly, for filled 
elastomer compounds, this type of modeling was done first by Joshi and Leonov (2001). 

Other nonlinear viscoelastic models of a differential type have also been recently 
proposed in the literature, being based on pure continuum mechanical phenomenology. 
For example, Saleeb and Arnold (2001) (see also the references cited therein) developed 
such an approach that also includes some nonlinear elements, modeling plasticity with 
the von-Mises type yield criterion. Also, Huber and Tsalunakis (2000) attempted to 
extend on arbitrarily nonlinear case of the linear, 3-parametric, “standard”, solid 
viscoelastic model with two equivalent designs using two springs and one dashpot. These 
two nonlinear models are presented in an awkward form, based on separating the total 
viscoelastic strain in a product of elastic and inelastic components, along with use of the 
second law. Recently Lin (2000) introduced another approach, which is close in spirit to 
that elaborated in the present paper. It analyzes viscoelastic solids in terms of a separate 
set of nonlinear Maxwell modes (with hidden tensor parameters) added to the equilibrium 
elastic mode. Although the equilibrium mode has been treated in a general and correct 
way, the evolution equations for the Maxwell modes as written violate material 
objectivity, and the dissipation term was proposed to be similar to the stress in the 
Maxwell mode, i.e. without strain-induced anisotropy. The same defects in analyzing the 
viscoelastic evolution equation in a model designed for finite deformations of viscoelastic 
solids, extended from the three-parametric, “standard” solid, viscoelastic model, can also 
be seen in papers by Bergstrom and Boyce (1998,1999,2000), in a recent review by 
Boyce and Arruda (2000), and in the work by Huang (1 999). 

The first step in developing practically usefid nonlinear, multi-modal, differential 
models for viscoelastic solids is the elaboration of reliable methods for determining linear 
relaxation spectrum, which remains valid for thermo-rheological complexity over a large 
region of temperatures and fiequencies. A thermodynamic theory for linear viscoelastic 
phenomena with thermo-rheological complexity has been developed by Freed and 
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Leonov (2002) in the previous paper of this series, where the Pade-Laplace method 
developed by Simhabhatla and Leonov (1993) for determining the spectrum from 
experimental data has also been discussed. 

The structure of the present paper is as follows. We initially develop a general, 
non-linear constitutive theory for general non-isothermal and compressible elastic and 
viscoelastic bchavior of xbber-kke solids, with a single nonlinear relaxation mode. In 
this, we follow the thermodynamic approach (Leonov, 1976, 1987,1999) developed for 
nonlinear liquid-like viscoelasticity. Then we simplifjr this theory and extend it for the 
multi-mode case, along with a simplified fiactioning of compressible and incompressible 
effects in nonlinear elasticity and viscoelasticity. 

2. A nonlinear theory of solid viscoelasticity with a single relaxation mode 

2.1. State variables and_fi.ee energy 

We employ in this Section the general approach of irreversible thermodynamics 
discussed in various books (e.g. see de Groot and Manur, 1962). We assume that in the 
simple case under study, the state variables for a viscoelastic solid are: the temperature T, 
a measure of total strain, say, the Finger deformation tensor B , and a hidden variable b - , 
assumed to be a symmetric second-rank non-dimensional tensor. We also assume that 
tensor b - is positive definite which, to some extent, can be justified (e.g. see Leonov, 
1987, 1999). Tensor b - is treated below as the Finger deformation for elastic 
(recoverable) strain, which can sometimes be independently measured. It is expected that 
introducing tensor b - into the set of state variables will lead to a nonlinear relaxation 
mechanism, which hopefully can properly describe nonlinear relaxation phenomena 
observed in cross-linked rubbers. In the following, we employ the Eulerian formulation 
of CE’s and, without loss of generality, use a Cartesian coordinate system for their 
description. 

It is convenient to introduce the Helmholtz’ free energy densityF per mass unit 
as a proper thermodynamic potential, that depends on temperatureT and the basic 
invariants of tensors - - B and = b . The crucial simplifying assumption that underlies all of 
todays approaches is that the fiee energy might be represented as a sum of two 
contributions, one from equilibrium processes (with tensor - - B as its parameter), and 
another fiom non-equilibri-m processes (with tensor b - as its parameter): 

- - - 

- 
- 

- 

- 

with no coupling present between - and b _ .  - Although the fiactioning (1) of the free 
energy in the a of equilibrium and non-equilibrium terms is uiiecessaii for developing 
the formal approach demonstrated below, it is one of simplifLing assumptions we finally 
use to make the approach useful for practical applications. 

The variables I: and Ij in (1) are the tensor invariants of B and b - that arise from 
the Hamilton-Cayley theorem, which are: 

- - - 
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A “thermodynamic” stress tensor oT - associated with the free energy F can be defined as: - 

Here o and CT are respectively the equilibrium and non-equilibrium parts of the total 
thermodynamic (Cauchy) stress tensor. These parts are presented as follows: 

=O =I 

In (3) and (4), p is the mass density, &is the unit tensor, CT and o are pure elastic 
(equilibrium) and viscoelastic (quasi-equilibrium) stresses, respectively. The only 
physical reason to use the suggested form in the second equation (4) is the explicit 
assumption (Leonov 1976, 1987, 1999) that polymeric liquids and solids always possess 
an “instantaneous” elastic limit, a quasi-equilibrium situation achieved on very fast 
(instantaneous) deformations, where the temporary entanglements in macromolecules act 
like additional cross-links. Note that no incompressibility assumption has been made. 

=O =I 

We further use the well-known kinematical relation for Finger deformation - B : - 

V 0 
Here B and - B are upper-convected and corotational (Jaumann) tensor time derivatives, 
and - e is the strain-rate (or rate of deformation) tensor. The corresponding kinematical (or 
kinetic) equation describing the evolution of tensor b - - , the main goal of the following 
constitutive theory, has yet to be established. 

- - - 

- 

2.2. Entropy production and nonlinear, non-isothermal relaxations 

The dissipative effects that have already been analyzed in detail for viscoelastic liquids in 
(Leonov, 1976, 1987, 1999) are now applied to viscoelastic solids with their non-steady, 
i.e. time dependent deformations. In order to describe the dissipative effects we use the 
continuum form of the Clausius-Duham expression for the entropy production P, , which 
in the general case under study has the form: 



The second and third terms on the right-hand side of (6), which can be presented in the 
form D = TP,IT , are called the mechanical dissipation. First we consider the isothermal 
behavior of viscoelastic solids. Equations (4)-(6) allow identically rewrite the dissipation 
in (6) as follows: 
D = T<. I T  = tr(a. - -  e )  - p d ~  / dt - -  

0 0 0 (7) 
=tr(a-e>-tr(o - -  - -  =o . ~ - ‘ - 1 / 2 ~ ) - t r ( a  = - - =1 -~~-‘.1/2b)=tr[(o-o = - - - - =o ).e]-tr(a = =1 .b-’ = -1/2b) - - 

The next step in the development of our theory is the introduction of an evolution 
law for tensor b ,  - similar to the kinematical equation (5). This has been discussed 
elsewhere (Leonov, 1976,1999) and resulted in the definition of “thermodynamic flux”, 

- 

thetensor e : 
=e 

0 .  
b - b - e  - e  .b=O. 
E =  =e =e = = 

Inserting (8) into (7) yields: 

Note that in the equilibrium limit, b - -  + B (and correspondingly, e =e + e = ), equation (8) _ -  
coincides with (5). It is also seen from (5) that a + a when b - -  + B .  It is therefore 

convenient to introduce the pure non-equilibrium (dissipative) quantities, the stress o 
=1 =o _ -  

= P  

and strain rate e , both of which vanish in equilibrium: 
= P  

Substituting the second relation fiom (1 0) into (8) reduces it to the form: 

V 
Here the operation b - has been defined in (5). Note that the form for dissipative strain rate 
tensor e in (1 1) has yet to be established. 

- 

=P 
Substituting (1 0) into (9) and then in (6) finally yields: 

The entropy production in (12) has a typical bilinear form Xk-Y, ,  where 
{ x, }={ VT,a ,o } are independent thermodynamic forces of different tensor - =p =1 
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dimensionality, and conjugated to them, are the independent quantities, { yk >={ q 3 -  e Y = p  e }, 

called the thermodynamic fluxes. It should be mentioned that, as in the linear case, the 
thermodynamic forces and thermodynamic fluxes are chosen to be respectively invariant 
and skew invariant relative to a reverse time transformation: t + -t . 

Three independent dissipative sources are now clearly seen in (12). The first one 
is due to the non-isothermal effects reflected by the first term in (12). The remaining 
contributions represent mechanical dissipation in the system accounted for the second 
and third terms in (12), which are: (i) the rate of mechanical dissipation produced by 
work of the irreversible stress cr on the total strain rate g, and (ii) the rate of mechanical 

dissipation produced by work of the viscoelastic stress cr on the irreversible strain 

rate e 
In accordance with quasi-linear irreversible thermodynamics, the above 

thermodynamic forces and fluxes are connected by phenomenological relations, with 
kinetic coefficients being various tensors that depend on h e  state variables: temperature 
T and strains - B and - b . Using the arguments of tensor dimensionality and Onsager 
symmetry of kinetic coefficients, proved for the quasi-linear case by Gyarmati (1 970), we 
can write phenomenological equations in the following general quasi-linear form: 

- -  

=P 

=1 

= p ‘  

Here the kinetic coefficients M, are some tensors of fourth rank, symmetric in their first 
and second couples of indices, and in a transposition of the first and second pairs of 
indices. The tensor M, has the dimensionality of viscosity, while M,is non- 
dimensional, and M, has the dimensionality of reciprocal viscosity. The scalar products 
in (13) mean: (M, : Qv = Miwe,k , etc. The heat conductivity - K - is now presented in (14) 
as a second order symmetric tensor. The dependences of the kinetic tensors in (13) and 
(14) on the strain tensors B and - b demonstrate the effect of the strain induced 
anisotropy. The skew Onsager symmetry in constitutive equations (13) is due to the 
“ m  ked” r nature of constitutive relations between the thermodynamic forces and fluxes we 
used here for the sake of convenience. 

form, 

- - - 

Substituting (1 3) and (1 4) into (6) presents the entropy production as the quadratic 

which due to the second law must be positive definite. Equation (15) means that the 
second rank tensor  and - - the two four-rank kinetic tensors M,and M,are positive 
definite, the last two in the sense of a 9 x 9 matrix whose rows and columns consist of the 
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terms related to the first and the second pair of indices. No thermodynamic constraint is 
imposed on the coupling kinetic coefficient M, present in the constitutive equations of 
(13). 

The general structure of the rank four kinetic tensors M, is quite complicated. 
Even in the case when they are isotropic tensor functions of a single (symmetric) second 
rank tensor argument, the explicit structure contains 12 independent constitutive scalars 
that depend on the three basic invariants of the tensor argument (Leonov, 1987). 
Although the general structure of tensors M, might be established, we avoid here these 
cumbersome algebraic formulae. Even in the much more simple example of the thermal 
conductivity tensor K(T, - - -  B, c )  its general structure, established below using the 
representation theorems (Truesdell and Noll, 1992, p.39, is still quite complicated: 

- - -  

Here the nine scalar coefficients K~ (i = O,l,. . .,8) in (16) can depend on temperature T , 
the six independent invariants, I; and I j  , and on the four mixed independent invariants 

The phenomenological relations in (1 3) and (1 4), along with the relations of (4), 
(9, (10) and (ll),  represent the closed general set of thermo-rheological nonlinear 
constitutive relations. In addition to them, one needs to include the balance equations for 
mass, momentum and internal energy U . Introducing the heat capacity c,under constant 

tensors Band b as cd = dU/dTi,,, , reduces the balance of internal energy to the 
common heat equation: 

I T .  

-z - - - - 

In the case of rubber (entropic) elasticity, when U = U ( T ) ,  the heat capacity is 
the function of only temperature. Note that the source term @(a. - -  e )  in the right-hand side 
of the heat equation (17) is not a mechanical dissipation but a mechanical power (the 
work per time unit) generated by stresses acting on strain rates. 

The above general phenomenological relations include into consideration the 
Kelvin-Voight stress. This prevents the “instantaneous” elastic response of viscoelastic 
solids and liquids caused by an applied stress. Restricting the class of consideration to be 
solid viscoelasticity admitting an instantaneous response, as solely observed in 
experiments, results in the simplifications, 

- -  

M,=O, M , = O ,  

Relations (1 8) considerably simplify the above CE’s which reduce to the form: 

8 



(MI =O, M, = O ) ,  e =P =M(T,B,b):cr - =I . (M=M,) (19) 

Here the expressions for stresses 0 and 0 are given in (4). 
Thus the complete set of constitutive relations for viscoelastic solids with 

instantaneous elasticity consists of ( i )  eiastic constitutive equations that include the first 
equation in (4) defining the equilibrium (elastic) stress, along with the well-known 
kinematical equation (5) for the total strain, (ii) the viscoelastic constitutive equations 
that include the definition of viscoelastic stress in (4), the evolution equation (1 1) 
combined with the constitutive relation (19), and (iii) the thermal constitutive relation 
(16)- 

=O =I 

3. A simplified model of nonlinear solid viscoelasticity with a single relaxation mode 

The general thermodynamic theory for nonlinear behavior of viscoelastic solids 
developed in the previous Section is too complicated to be used in applications, even in 
the case of a single nonlinear relaxation mode. Therefore, in this Section some 
simplifying assumptions are made for our modeling with one nonlinear relaxation mode. 
These assumptions should be considered as intuitive, as we cannot justify them fiom any 
fundamental macroscopic point of view, although they might have some physical 
reasons, and can also be experimentally verified a posteriori. 

The first step is a decoupling of equilibrium and non-equilibrium effects, as has 
been proposed in (1) and used in the Section 2. The second step is to assume a decoupling 
of relaxation phenomena fiom the equilibrium one. Hence we consider the following 
simplified description of non-equilibrium (relaxations and heat conductivity) effects. 

3. I .  Simpli3ed modeling of nonlinear relaxation properties 

All ineversible properties in the above general theory with instantaneous viscoelasticity 
are entirely determined by the second stress-strain relation in (4) for the irreversible stress 
tensor cr , along with kinetic equation (1 1) for the evolution of tensor b - , and the 
phenomenological relation (1 9). Similar to the liquid-like nonlinear viscoelastic theory 
(Leonov, 1976, 1987,1999), we assume in the phenomenological relation of (1 9) that the 
kinetic tensor M depends only on temperature and “its own”, non-equilibrium strain 
tensor b - , i.e. M=M (c b - - ). With this assumption, equation (19) becomes: 

=I - 

- 

Relation (20) means that at a given temperature the non-equilibrium strain rate, e (T,b) , 

is an isotropic tensor function of the non-equilibrium elastic strain tensor b - . Then the 
general structure of the evolution equation (1 1) for tensor b - is: 

= p  = 

- 
- 

V 



This version of the theory has been well developed previously for a single nonlinear 
relaxation mode in incompressible viscoelastic liquids, when I3 = det - b = 1 . It was then 
extended for decoupled multi-mode nonlinear modeling with independent tensor 
parameters, and has been successfully applied to describe nonlinear viscoelastic 
properties of several polymeric melts employing only a few “nonlinear” numerical 
parameters Leonov, 1999). It should be reminded that according to the dissipative 
inequality (12), tr(a .e ) 2 0 .  =I = p  

3.2. Modeling of nonlinear thermal properties 

In spirit of the previous Section, simplifLing models for the heat conductivity K - - could be 
suggested so that the thermal conductivity tensor in (16) depends only on equilibrium 
strain B - or on the non-equilibrium elastic strain b - . However, a dependence of K - on b - 
predicts an isotropic thermal conductivity in the equilibrium under stress, which 
contradicts experimental data (see Novichionok and Shulman, 197 1). Another possibility 
is a dependence of K on the full strain - B , i.e. 

- 

- - - 

K ( T , B ) = K  - -  o =  6 + ~  1= B + K  2 =  B2 ; - -  K~ = K~ (T; I:, I;, I,”). 

Here the second rank tensor 5 - is an isotropic tensor function of the total elastic Finger 
deformation - B - . Note that equation (21) predicts that after unloading the heat 
conductivity is isotropic. Therefore a crucial test of (21) is measuring heat conductivity 
during a retardation experiment, viz. after unloading. 

4. Fractioning the compressible (bulk) and shearing effects, and simplifications 

We now analyze compressibility effects within the above viscoelastic approach with 
instantaneous elasticity, considering initially the pure elastic compressible case, and then 
the viscoelasic effects. The main idea here is to introduce instead of invariants I:, the 
density p and other corresponding invariants as the new independent variables. This 
approach originates from a specific equilibrium stress-strain relation (see equation (27) 
below in the text), which in simple elongation has been first introduced by Flory (1 96 1) 
(see also Treloar, 1975), and in the 3D elastic case, by Leonov (1976). We then will 
generalize these results for finite viscoelasticity. A lot of direct attempts to treat 
compressibility in finite (thermo-) elasticity using the general form for free energy 
function, F = Fo(T; I:,I;, I,”) , have also been considered in the literature (e.g. see 
Anand, 1996, and references there). However, using these results, it is difficult to 
separate bulk and shear deformations. 

4.1. Equilibrium @re elastic) case 
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Here the free energy is represented in the form: F = Fo (7‘; I,”, I:, 1;) , the stress tensor is 
represented by the first formula in (4), and the kinematical relation is given by (5) .  
Additionally, there are two well-known equations, one relating the invariant I ,  and 
density p , and the second, the mass balance equation: 

If = ( ~ ~ / p ) ~ ,  d,p+E[ . (pg)=O or d lnp/d t=- t re .  - - (22) 

Here u - is the velocity vector. Note that the second relation in (22) is easily derived from 
the first one and the kinematical relation (5). Keeping in mind that the invariants I; 
OCCUT in the Hamilton-Cayley identity, 

we introduce new tensor i , 
E; 

and the corresponding basic invariants fj” , 

jf =1/2[(11 * B  ) 2 -trB A 2  ]=trh-’ = ( p / p o )  413 I ,  B . 
- - - - 

Formulae (24) and (25) reduce the Hamilton-Cayley identity (23) to the “incompressible” 
form: 

Using (25), the basic invariants I; in the equilibrium part Fo (T; I:, I:, I,”) of the 

free energy can be expressed via the density pand the two new invariants f: and i,” to 
obtain: 

The temperature in (26) has been omitted for the sake of simplicity. Formula (26) allows 
expressing the equilibrium stress-strain relation in the form: 
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The first term in (27) represents the equilibrium thermodynamic pressure, and the second 
deviatoric term reflects the effects of isochoric (“shearing”) deformations. When the 
(infinitesimal) bulk modulus K is extremely high, as compared to the infinitesimal shear 
(Hook) modulus G, the first term can be considered as “isotropic pressure”, with the 
formai iimit: p = iim p-q, 1 Ap+0,K+4) . 

Finally, using relations (24) reduces the kinematical equation (5)  to the form: 

7 :  I 

Here 2 is the deviator of the strain-rate tensor e .  - Comparing ( 5 )  and (28) demonstrates 
that the kinematical relation (5) is invariant relative to the volume “compressible- 
isochoric” transformation: - B + - -  h , e + - ê  . 

- - - 

- - -  - 

4.2. Non-equilibrium (viscoelastic) case 

In this case, the component F’ = F’(T; I,, 12, I,) of the free energy function is used 
instead of the above equilibrium one, F o .  Still, the way of the analysis here is quite 
similar to that for the equilibrium case. Similar to the first relation in (22), we now 
introduce a new irreversible (“density-like”) variable pi as: 

Relation (29) takes into account the fact that in equilibrium, pi = po . Then similarly to 

(24) and (25), we introduce the new hidden (“incompressible”) tensor variable - 6 and its - 
A 

invariants r i a :  

Relations (29)-(31) reduce the Hamilton-Cayley identity for tensor b - to the 
“incompressible” form: 

- 
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Then similar to (26), one can represent the irreversible part of the free energy in the form, 

F' (T, Il , I,, 13) = (T,  pi, il, i2 )  and obtain, similar to (27), the formulae for stress in the 
irreversible case: 

(33) 

Here p T  is the thermodynamic pressure due to compressibility of the viscoelastic solid, 
with equilibrium p o  and non-equilibrium p1 components, presented as: 

The tensor variable & - in (33) is the thermodynamic stress deviator consistent of two, 
equilibrium Ci and non-equilibrium & , deviator components. These are of the form: 

- 

=O =1 

To derive the evolution equation for the bulk irreversible parameter p i ,  the 

kinetic equation (1 1) is contracted (right or left> with tensor b-' - to obtain: - 

dlnl,  ldt +2tre = 2tre. - - 'P 

Using (29) and the last relation in (22) reduces (36a) to another form: 

d h p ' l d t - t r e  =P =dlnpld t=- t re .  - - (3 6b) 

Equations (36a,b) show that the difference between pi and p vanishes in the 
equilibrium limit when e + 0 .  To close the set of bulk kinetic equations, one should 

complement equations (36ayb) with the phenomenological relation (20) or (1 1 a). 
Finally, substituting (36b) into (1 1) reduces relation (1 1) to the "incompressible" form: 

' p  = 

Here b  ̂ is defined in (30), with t? and ê  being the respective deviators of e and e . 
=P - - = P  - L= - 
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4.3. SimpliJcations: decoupling of bulk and shearing effects 

In rubberlike materials, the bulk effects are usually insignificant when compared with the 
huge shearing deformations. Therefore one can attempt to completely decouple bulk and 
shear effects in viscoelastic deformations and stresses, which leads to a big simplification 
in the constitutive equations for fiiGte viscoe:mticity. There is a warning, however, 
whereas the bulk deformations insignificantly affect the shear strains, the contrary may 
not be true. There is a need for experimental verification of the simplifying formulae 
proposed below. 

The first step to take in the simplificatior, is the zssmption of fractioning the free 
energy into a sum of bulk and shearing terms, 

where 

With respect to (38) and (39), the formulae of (34) and (35) show that a decoupling of 
bulk and shear phenomena happen for both equilibrium and non-equilibrium parts of the 
stress tensor. 

The second step to take in the simplification is the assumption of a decoupling of 
the bulk and shear evolution equations (36) and (37). In this regard, we assume: 

tre =P = -a(pi)pl (T, pi )  10; ( T )  = -[a(pi) 10; (T)]pp’a$ I api(T, pi )  , (40) 

Formulae (33)-(35) and (38)-(41) present the possible complete decoupling of bulk and 
shear viscoelastic phenomena. Note that formula (41) for the deviator 2 has been taken 

in the form as proposed and tested for polymer fluids and a gum rubber (Leonov, 1999; 
Mitra, 2000). The temperature dependent parameters 6; (T)  and (T )  are the bulk and 

= P  

shear relaxation times, which, as shown in the next Section, occu in linear 
viscoelasticity. Due to the second law, the functions a(p’) and p(fl, f2) are positive and 
they go to the unity in the equilibrium limit (pi + po, fl + f2 + 3). They represent 
strain scaling factors for the corresponding relaxation times. These scaling factors are 
similar to the “material clock” introduced in the K-BKZ theory by Bernstein and 
Shokooh (1 980), following the initial approach developed in viscoplasticity by Valanis 
(1971). 

Substituting (40) into (36b) yields the nonlinear bulk (scalar) evolution equation: 

d In pi I dt + [a(pi)  I a,’(T)]pp‘@ I api(T, pi )  = d In p I dt . (42) 
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Substituting (41) into (37) produces the nonlinear tensor evolution equation: 

The evolution equations in (42) and (43) are complemented by the stress-strain relations 
of (33)-(35) with account for (38) and (39). This is a complete set of nonlinear 
constitutive equations with a decoupling in the equilibrium and non-equilibrium, and also 
in the bulk and shearing, phenomena. 

- 4.4. Limit to linear viscoelasticity 

We demand that the nonlinear set of CE’s derived above should have a regular limit to 
linear viscoelasticity, including linear elasticity. The common formulae 

- B - = exp(2h =O ); b - - = exp(2h =I ) (44) 

are used below to relate the Finger strain tensors B and b - , and the respective Hencky 
strain tensors, h and h . Then for small Hencky strains, the strain tensors Band b - can 
be presented as: 

- - - 

- - =O =I - 

Also, with the precision of the higher terms, 

where 

trh =O =-ApIpo; trh = I  =-Api /po .  (47) 

Substituting these formulae into &e general expression fix the Helmholtz potential 
F = Fo (T; I:, I,”, I,”) + F’ (T; Il , 12, 13), expanded in a Taylor series about the unloaded 
state yields, with the precision not higher than the quadratic, the following presentation: 

AF = 1 2K0 (T)(trEo)2 - + 1 I 2G0 (T)tr(hr) - + 1 1 2 4  (T)(tr - -1 h )2  + 1 / 2G1 (T)tr(i2 - -1 ) . (48) 

The first two terms in (48) represent the equilibrium contribution to the free energy, 
while the second two terms represent the non-equilibrium one, vanishing in equilibrium. 
Here KO and K, are the equilibrium and non-equilibrium bulk moduli; Go and GI are the 
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equilibrium and non-equilibrium shear (Hookean) moduli; ĥ  and i denote the respective 
deviators of equilibrium and non-equilibrium, infinitesimal, Hencky strain tensors. 
Equations (33)-(35) hold here with respective elastic and viscoelastic stress-strain 
relations being of the form: 

=O =I 

while the evolution equations (42) and (43) take their respective forms: 

d(trh ) ldt=tre,  dh  ̂ /dt=e^; - - 
=O - - - -0 

d(trh )ldt + (trh ) IO:  = t r e ,  d i  Idt + i 18, = @ e ^ .  - - 
=I =I - - =I  =I 

For shearing components of the infinitesimal tensors, these equations coincide with those 
that have been considered for linear viscoelasticity with a single relaxation mode in the 
first paper (Freed and Leonov, 2002) of this series. 

Finally, it should be mentioned that in the linear limit, the heat capacity tensor 
- K degenerates into an isotropic tensor (i.e. scalar): K - - + rc0 2. - 

5. Simplified models of solid viscoelasticity with several nonlinear relaxation modes 

We now consider multi-mode, nonlinear, solid-like viscoelasticity. In order to do that in a 
constructive way, we adopt all the modeling simplifications as discussed in the previous 
Sections 3 and 4 for a nonlinear, single relaxation mode. We will also additionally use, 
for both the shearing Bk and bulk 8,” relaxation times, the inequalities: 

. 

Inequalities (51) allow us to present the properties of viscoelastic solids as the sum of 
nonlinear viscoelastic properties for independent relaxation modes. Several types of 
additivities are involved here: (i) the additivity of elastic and viscoelastic nonlinear 
strains; (ii) the additivity of various viscoelastic nonlinear modes, and (iii) the additivity 
of shearing and bulk (compressible) viscoelastic properties within various nonlinear 
modes. In this approach, the Helmholtz free energy function is represented in the form: 

n 

F = F 0  (T;rj”) + F k  (T;  I,”) = F; (T; p) + (T; il” , i;) 
k=l 

Correspondingly, the stress in the system is represented as: 
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& 6 ,..., & Here the “pressures”, Po’P19*’*’Pnand stress deviators, =0’=1 = n ,  are defined by 
formulae (34) and (35). 

Additionally, in the evolution equations (42) and (43) for non-equilibrium 

quantities, the scalars pk and tensors =k are used. Thus the relations (34),(35), (52),(53) 
and (42),(43) form a closed set of nonlinear constitutive equations of the differential type. 
These equations can model the properties of both the liquid and solid states of rubbery 
materials, with changing parameters during a cure reaction. The nice feature of these 
equations is that they have the same structure, except for the equilibrium part. 

Additional assumptions and simplifications could be considered that allow for 
various scaling approaches. 

6 i 

(i) Temperature scaling 

There is a fundamental reason related to the physics of rubber elasticity (Treloar, 
1975; Ferry, 1980) to assume that both the equilibrium and non-equilibrium shearing 
strain energies in equation (52) are simply proportional to the absolute (Kelvin) 
temperature, T. Therefore both the equilibrium and non-equilibrium shearing stresses in 
equation (53) will be proportional to pT, too. We can also assume that all the relaxation 
times in our discrete spectrum for shear viscoelasticity have the same temperature 

dependence as e l ( T ) ,  say a WLF representation above the glass transition, or an 
Arrhenius form for those temperatures well above the glass transition. Then scaling the 

stresses with p T  and time with ’1 , makes the shearing terms in the viscoelastic CE’s 
temperature independent. This is the time-temperature superposition principle applied to 
nonlinear viscoelastic shearing phenomena. Likewise scaling for the bulk relations might 

also be correct. Although the bulk relaxation times ‘i(T)may have a uniform 
temperature dependence, it might be different from that for shearing. Therefore, in 
general, time-temperature superposition can work separately for shearing and bulk 
phenomena, but might be violated when considering a combined, bulk-shearing 
deformation. Experimental verification of this situation is important here. 

(ii) Deformation Scaling 

If the non-dimensional (numerical) material parameters, involved in the modeling of 
nonlinear terms in the thermodynamic equation for stress and deformation kinetics, are 
independent of relaxation mode, then the nonlinear behavior in the relaxation modes is 
self-similar. Consequently, a scaling approach can be effectively used in advanced 
computations to restore the values for various modes from calculations made for a single 
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relaxation mode. The analysis of this type of scaling has been made for viscoelastic 
liquids by Leonov and Padovan (1 999). 

6. Conclusion 

- lhe present, second, paper of this series is devoted to derivation of CE's for non- 
isothermal solid viscoelasticity with finite and, in general, compressible deformations 
(the first paper by Freed and Leonov, 2002, analyzed the linear theory). We employed 
here the general approach of quasi-linear, non-equilibrium thermodynamics that has been 
successfully used and tested by Leonov and his collaborators (1976, 1987, 1999) for 
viscoelastic liquids. Several assumptions were employed here to present the results of the 
constitutive theory in its most simplified form. 

First, we assumed that the total free energy could be decomposed in a sum of 
equilibrium and non-equilibrium terms. Although this decomposition is the only one used 
in other theoretical approaches, there is no justification for making this assumption. 

Second, we assumed that the non-equilibrium viscoelastic properties could be 
represented as a sum of independent nonlinear relaxation modes, originated fiom their 
linear modes. This crucial simplifying assumption has successfully been used for liquid- 
like nonlinear viscoelasticity (L,eonov, 1976, 1987, 1999) when the relaxation times in a 
discrete relaxation spectrum are well separated. Using a Pade-Laplace technique 
(Simhambhatla and Leonov, 1993) for effective discretization of relaxation spectrum 
from experimental data, it was additionally showed (e.g. see Leonov, 1999) that this 
assumption is always satisfied for polymer melts and concentrated polymeric solutions. 
Thus the presented approach essentially views the nonlinear viscoelastic effects in solids 
as similar to these found in the liquids. For cross-linked rubbers, this approach has been 
experimentally confirmed by chemo-rheological studies (e.g. see Mitra, 2000). In these 
studies, the changes in viscoelastic (and occurrence of equilibrium, elastic) parameters in 
the course of vulcanization were detected experimentally and modeled. 

Third, we also fractioned, and then completely decoupled the shearing and bulk 
(compressibility) elastic and viscoelastic phenomena in nonlinear solid viscoelasticity. 
Although the fractioning of bulk and shearing effects is based on the fundamental 
introduction of new strain variables, the simplified decoupling of these effects is by no 
means fundamental and needs experimental testing. 

Finally, the quasi-linear thermodynamic approach we employed automatically 
predicts the strain-induced anisotropy in heat conductivity, which has been detected 
exper~-entally in equilibrium under large strains in crosslinked rubbers (Novichionok 
and Shulman, 1971). 

It should be mentioned that before the proposed constitutive theory can be used, 
one needs to specialize some material functions, such as the functional forms of the 
equilibrium and non-equilibrium free energy functions, etc, along with some stability 
constraints imposed on these. This will be done in the next, final paper of the series. 

We conclude by mentioning that the results presented in this paper are valid for 
rubbery region of nonlinear solid viscoelasticity. A complementary approach for the 
glassy region will be presented in the next paper. 
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